Lesson 25. Local Minima and Maxima

1 Local minima and maxima

- Let f be a function of two variables
- f has a local maximum at (a, b) if $f(a, b) \geq f(x, y)$ for all (x, y) "close" to (a, b)
- f has a local minimum at (a, b) if $f(a, b) \leq f(x, y)$ for all (x, y) "close" to (a, b)

Example 1. The contour map for $f(x, y)=x^{4}+y^{4}-4 x y+1$ is shown below. Find the local maxima and minima of f.

2 Critical points: how to find local minima and maxima

- (a, b) is a critical point of f if
or if one of these partial derivatives does not exist
- If f has a local minimum or maximum at (a, b), then (a, b) is a critical point
- Finding local minima and maxima of f :

1. Find all critical points of f
2. Categorize each critical point using the second derivatives test:

- Let $D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$
- If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a
- If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a
- If $D(a, b)<0$, then (a, b) is a \quad of f
- If $D(a, b)=0$, the test gives no information
- Saddle points
- Highest point in one direction, lowest point in the other direction
- Graphically:

- Saddle points look like hyperbolas in contour maps (see $(0,0)$ in Example 1)

Example 2. Find the local minimum and maximum values and saddle points of $f(x, y)=x^{4}+y^{4}-4 x y+1$.

Example 3. Find the local minimum and maximum values and saddle points of $f(x, y)=y\left(e^{x}-1\right)$.

